HIF-dependent induction of apical CD55 coordinates epithelial clearance of neutrophils.
نویسندگان
چکیده
Sites of inflammation are associated with dramatic shifts in tissue metabolism. Inflammation can result in significant tissue hypoxia, with resultant induction of hypoxia-responsive genes. Given this association, we hypothesized that neutrophil (PMN) ligands expressed on epithelial cells may be regulated by hypoxia. Initial studies confirmed earlier results that epithelial hypoxia enhances PMN transepithelial migration and promotes apical clearance of PMN from the epithelial surface. A screen of known PMN ligands revealed a surprisingly stable expression pattern in hypoxia. However, this screen identified one gene, CD55, as a highly hypoxia-inducible molecule expressed on the apical membrane of mucosal epithelia. Subsequent studies verified the induction of CD55 mRNA and protein expression by hypoxia. Overexpression of CD55 by transfection in nonhypoxic epithelia resulted in a similar pattern of apical PMN clearance, and peptide mimetics corresponding to the PMN binding site on DAF blocked such apical clearance of PMN. Studies directed at understanding molecular pathways of hypoxia inducibility revealed that a approximately 200 bp region of the CD55 gene conferred hypoxia inducibility for CD55. These studies identified a functional binding site for the transcriptional regulator hypoxia-inducible factor (HIF). Taken together, these results identify HIF-dependent induction of epithelial CD55 in the resolution of ongoing inflammation through clearance of apical PMN.
منابع مشابه
Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution.
Migration of neutrophils (PMN) across epithelia is a pathological hallmark of numerous mucosal diseases. Whereas lesions at mucosal surfaces are generally self-limiting, endogenous mechanisms of resolution are incompletely understood. Previous studies revealed that resolvins directly act on PMN to attenuate transendothelial migration, less is known about the influence of resolvins on PMN-epithe...
متن کاملHypertonic induction of aquaporin-5: novel role of hypoxia-inducible factor-1alpha.
Aquaporin-5 (AQP5) is a water channel protein expressed on the apical surface of alveolar epithelial type I cells in distal rat lung, suggesting a role for AQP5 in regulating alveolar surface liquid tonicity and/or cell volume. We investigated the molecular mechanisms underlying hypertonic induction of AQP5 in primary rat alveolar epithelial cells (AEC). Steady-state levels of AQP5 mRNA and pro...
متن کاملAntiadhesive Role of Apical Decay-accelerating Factor (CD55) in Human Neutrophil Transmigration across Mucosal Epithelia
Neutrophil migration across mucosal epithelium during inflammatory episodes involves the precise orchestration of a number a cell surface molecules and signaling pathways. After successful migration to the apical epithelial surface, apically localized epithelial proteins may serve to retain PMN at the lumenal surface. At present, identification of apical epithelial ligands and their PMN counter...
متن کاملNeutrophil-epithelial crosstalk at the intestinal lumenal surface mediated by reciprocal secretion of adenosine and IL-6.
Adenosine is formed in the intestinal lumen during active inflammation from neutrophil-derived 5' AMP. Using intestinal epithelial cell line T84, we studied the effect of adenosine on the secretion of IL-6, a proinflammatory cytokine involved in neutrophil degranulation and lymphocyte differentiation. Stimulation of T84 monolayers with either apical or basolateral adenosine induces A2b receptor...
متن کاملRequirement of the Shigella flexneri virulence plasmid in the ability to induce trafficking of neutrophils across polarized monolayers of the intestinal epithelium.
Attachment of an array of enteric pathogens to epithelial surfaces is accompanied by recruitment of polymorphonuclear leukocytes (PMN) across the intestinal epithelium. In this report, we examine how Shigella-intestinal epithelium interactions evoke the mucosal inflammatory response. We modeled these interactions in vitro by using polarized monolayers of the human intestinal epithelial cell lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 19 8 شماره
صفحات -
تاریخ انتشار 2005